研究显示:国内半数城市空气污染数据存在真实性问题

马亮 / “政见”观察员

2015-02-14 12:37 来源:澎湃新闻

字号
【编者按】
       自我国推行空气质量数据监测后,一些地方不断曝出监测数据在改善,而环境质量却持续恶化的新闻。此中蹊跷,引人深思。地方政府大气监测数据的准确性问题,成为去年“两会”代表和委员关注的热点之一,一些代表和委员甚至批评中国部分城市伪造空气监测数据,治霾受阻于利益相关者。
       众所周知,治理环境污染的成本高昂,在信息不对称的情况下,弄虚作假显然更容易一些,这也导致某些地方政府修饰空气污染数据,妨碍公民知情权,并干扰治霾决策。在今年即将召开的“两会”上,我们期待代表和委员们继续关注这一问题。
近日,陕西汉中被指为降污染指数给监测仪喷水
       还记得“我为祖国测空气”运动吗?2011年底,北京雾霾极为严重,但是北京市环保局的官方数据却很“和谐”,而美国驻华大使馆的监测数据则一度“爆表”。两个来源的数据“打架”,让人们开始怀疑地方数据的可信度。于是,一些民间环保组织和志愿者发起“我为祖国测空气”,期望自购监测设备,以发布独立的空气污染数据,与地方数据“抗衡”。但是,环境监测设备昂贵且专业性强,“小米加步枪”的便携式自测设备的专业性同样备受争议。
       那么问题来了:地方数据是否有问题?如果存在包括造假在内的疑问的话,如何找到证据?加州大学两位研究者试图通过研究解决这个问题。他们使用2001-2010年的中国113座城市日均空气污染浓度数据,揭示了城市自报数据有问题的证据与修改时点。
       他们的研究显示:高达一半的城市都存在不同程度的“人造”嫌疑。有意思的是,这些城市往往倾向于在不易被觉察的时间(如能见度高而风速低的时候)修饰官方数据,以避免被发现。
       不过,“人造”数据并非“天衣无缝”,通过两位作者开发的方法,就可以揭示其“人造”行为。两位作者将其形容为“徒劳的修饰”,因为他们认为中国城市修饰空气污染数据是徒劳无益的。
空气污染数据的人造诱因
       为了激励城市政府重视空气污染治理,地方官员的政绩考核中往往包括诸如“蓝天数”这样的指标,即全年空气污染指数低于100点的天数。比如环保部开发的“城考”体系,规定环保重点城市全年85%的天数必须达到蓝天标准。
       环境保护的重要性越来越强,地方官员的晋升也受其影响,因此他们有动力去完成这些环保考核指标。但治理环境污染的成本高昂,在信息不对称的情况下弄虚作假显得更容易。
       由于缺少独立的监督机制,地方官员有强烈的激励去修饰数据,以低报空气污染数据并获得较佳的考核结果。
       数据人造的危害是明显而严重的,它减弱了环境监测的预警效应,也妨碍了公民的知情权。如果空气污染非常严重,但官方发布的数据却不予提醒,那么暴露在污染中的市民无异于“躺着中枪”,在毫不知情的情况下承受污染危害。基于这些被修饰的数据而开展的实证研究,也可能得出错误的结论,而据此提出的政策建议则可能是误导性的,可谓“遗患无穷”。
       研究者将数据“人造”界定为不报告真实污染水平的行为,如修改数据或隐藏不好的污染数据。值得一提的是,这不包括政府临时关停工厂、单双号限行等策略性行为——无论是2008年的北京奥林匹克运动会还是2010年的上海世博会,以及2014年的北京APEC领导峰会,政府都曾使用类似的手段,以在短期内改善空气质量。这些策略性行为虽然效率不高,但的确在短期内降低了污染程度,因此不能说是数据造假。
揭露数据问题的“福尔摩斯”
       揭露数据造假的最佳方式当然是使用独立的数据来源,与官方数据进行比对。但是,这种数据往往很难获取,特别是大样本和跨时期的数据更难找到。
       不过,还有别的办法来识破人造数据的蛛丝马迹。在不存在数据造假的情况下,空气污染浓度的分布应该是连续的或平滑的曲线。当地方官员试图造假时,最有可能在空气污染浓度处于蓝天标准的临界点上时下手。
       这样一来,把略高于临界点的数据稍微拉下来一点,就可以使当天的空气污染数据符合蓝天标准,且不容易被人察觉。如果这种情况三番五次地发生,就可以说明存在数据虚假的嫌疑。
       研究者的数据来自隶属于环境保护部的中国环境监测总站。它只是汇总各地政府上报的空气污染数据,因此数据如果发生真实性问题,应归因于地方政府。
       中国环境监测总站对外披露的数据只有API(Air pollution Index,空气污染指数)和主要污染物,而不包括各污染物的具体浓度值。研究者获取了所有详细数据,发现城市的API均值是76.32,蓝天数占84.6%,刚好接近蓝天数的考核标准(85%)。
       研究者使用一种叫做“断点检验法”的方法,发现数据中的确存在值得关注的造假问题,其表现是:在临界点上出现不连续的断点。
       他们发现,大约半数的城市存在修改PM10污染浓度的嫌疑。但是,二氧化硫和二氧化氮的数据修改并不明显。由于PM10是中国多数城市无法达到蓝天标准的主要诱因(高达73.7%),因此在这个指标上有所动作就不足为奇了。
找准问题数据的时机
       光发现数据问题只是第一步,下一步是锁定修改的时机。这就需要通过适当的匹配方法,将地理位置和省份特征都类似的城市配对。研究者将地理邻近且属于同一个省份的城市配对,获得了13对城市。
       在能见度和其他天气情况相同的情况下,配对城市的空气污染程度应该是接近的。如果某个城市出现异常情况,就可以揭示城市在哪些情况下更倾向于造假。
       研究者使用的气象和天气数据包括能见度、气温、大气压、降雨量、风速等,其中能见度与空气污染程度的相关程度最高,可以视为空气污染程度的代理指标。气象数据来自美国的国家气候数据中心,天气数据来自中国的国家气象局。由于气象局没有对数据做手脚的动机,因此可以将其报告视为可信数据。
       借由“面板匹配法”,研究发现:13对城市中有4对没有造假嫌疑,剩下9对都有可能造假。
       为了掩人耳目,修改数据最可能发生在异常情况不易被揭发的日子。在能见度高而风速低的时候,数据修改更容易发生。能见度高时,人们会认为空气污染不严重,造假不易被觉察。风速低的时候,空气污染物无法随风而去,需要人为干预以影响空气污染数据。
猫和老鼠的游戏仍将继续下去
       这项研究只是说明处于临界点的数据修改更容易发生,但实际上数据造假可以在任何环节出现,因此其严重程度可能被低估了。
       该研究列出了数据造假和未造假的城市榜单和地图分布,从中可以发现无论南北、沿海或内地、大城市或小城市,都有修改数据的嫌疑。
       有趣的是,为什么某些城市修改数据,而另一些城市却没有造假?其背后的原因何在,尚值得未来研究予以揭示。
       值得注意的是,2012年新的空气质量标准出台后,特别是国家加强了大气污染防治举措,使各地政府不得不重视空气污染治理。随着各地数据直报系统的逐步建立,以及时均数据的实时发布,都使地方政府干预空气污染数据的可能性大为降低。但是,“道高一尺魔高一丈”,修改数据的新迹象仍有待考察。
参考文献:
       Ghanem, D., & Zhang, J. (2014). ‘Effortless perfection:’ Do Chinese cities manipulate air pollution data?. Journal of Environmental Economics and Management, 68(2), 203-225.     

        (本文为澎湃新闻与“政见”网站合作稿。政见网:http://www.cnpolitics.org/,微信公号:cnpolitics)
责任编辑:谢秉强澎湃新闻报料:4009-20-4009   澎湃新闻,未经授权不得转载
关键词 >> 空气污染数据

相关推荐

评论(157)

热新闻

澎湃新闻APP下载

客户端下载

热话题

热门推荐

关于澎湃 在澎湃工作 联系我们 版权声明 澎湃广告 友情链接