美国第一个针对遗传病的基因疗法有望上市:为失明者揭开黑布

澎湃新闻记者 王盈颖

2017-10-25 08:53 来源:澎湃新闻

字号
对莱伯先天性黑蒙症患者而言,失明是一经出生就注定,需要一生去逐渐接受的事实。
它是一种在新生儿出生一年内就发病的罕见遗传病,每10万人中有2-3位不幸罹患。捕捉疾病痕迹的场景往往发生在,婴儿的目光不会追随悬挂晃动着的玩偶,对刺眼的光源却毫不避让。
随着年岁增长,患者的视野会是轮廓和阴影的集合,并在中年时,彻底跌入漆黑的失明深渊。而且,无药可医。
对10月中旬,在美国食品药品监管局(FDA)咨询委员会面前做术后陈述的几位莱伯先天性黑蒙症患者来说,他们大多不会后悔自己选择接受了一个基因疗法的临床试验,来对抗失明的到临。
12:0——听取患者反馈和查阅三期临床试验数据后,评估新药安全性与有效性的FDA咨询委员会匿名投了全票,支持美国Spark Therapeutics公司的基因疗法“Luxturna”(针对RPE65基因异常的患者)上市。能否改变莱伯先天性黑蒙症无药可医的局面,只差临门一脚:2018年1月前,FDA将做最后决定。
Carper姐弟俩都患有莱伯先天性黑蒙症,他们都接受了基因治疗的临床试验。来源:《金融时报》

若成功上市,这将是美国第一款针对遗传病的正式基因疗法,虽然2016年9月美国FDA快速通道在有争议的情况下有限度地批准了美国Sarepta公司治疗杜氏肌营养不良的基因治疗药物Exondys 51。在全球范围内,第一款矫正遗传病的基因疗法是荷兰UniQure公司2012年在欧洲上市的Glybera。
作为用于治疗罕见病脂蛋白酯酶缺乏症的基因治疗药物,Glybera赚得名声,但落得一个令人唏嘘的结局。4月,UniQure公司宣布,不再重新申请Glybera的销售许可,10月后将退出市场。在100万美元/次的收费下,Glybera上市以来仅出售一次。
同样预测双眼治疗价格为100万美元的Luxturna能否带来一个新的开局?这尚在人们谨慎的期望之中。
但就基因疗法在莱伯先天性黑蒙症上的应用而言,用浙江大学医学部基础医学系教授、发现莱伯先天性黑蒙症第18个致病基因的祁鸣的话来说,这是“非常震撼的”。
祁鸣

RPE65
1869年,DNA首次被分离出来,元素周期表被发现。就在这一年,德国眼科医生西奥德·莱伯(Theodor Leber)首次描述了发生在婴儿时期,因遗传性视网膜疾病而造成的严重视力损伤。莱伯先天性黑蒙症(Leber Congenital Amaurosis,LCA)由此得名,开始进入历史的视野。
在解释这种疾病为何造成视力困难前,先要提到维生素A在“看见”中扮演的角色。
早在古埃及时期,人们已经开始模糊地意识到,糟糕的摄食条件和夜盲症之间的关系。直到第一次世界大战期间,研究人员才进一步缩小范围,将食物中的维生素A摄入不足和营养性夜盲症联系起来。
20世纪30年代,美国科学家乔治·沃尔德(George Wald)首次确认,维生素A在视觉系统中扮演着何种角色。他发现,视网膜中的感光色素——视紫红质是由一种蛋白和维生素A组成的混合物。进一步地,沃尔德提了“视循环(Visual Cycle)”的概念。
这一循环是什么过程呢?第一步,视紫红质接收到光线后,会改变维生素A的性状,将其与和蛋白分离,产生能量,将光能转化为电能,以此将信号沿视神经传导到脑区。之后,原先的维生素A会被回收利用,恢复之前的形状,和蛋白重新结合,如此不断往复。正因为在视网膜上的发现,沃尔德获得了1967年的诺贝尔生理学或医学奖。
RPE65基因被发现是很多年后。1993年,美国眼科研究所的研究员迈克·雷蒙(T.Michael Redmond)发现,在视循环中,一个蛋白在合成维生素A中必不可少,而这种蛋白正由RPE65基因编码产生。
1997年,RPE65基因被确认与莱伯先天性黑蒙症相关。RPE65基因“罢工”的患者会导致维生素A无法回收,不能和蛋白再度结合,从而导致视紫红质缺失,视觉信号无法传导至大脑,自然也就无法看清。
RPE65由此成为莱伯先天性黑蒙症第二个被发现的致病基因,所以该基因出现问题的患者也被称为LCA2型患者。LCA2型是至今发现的22个致病基因中最常见的类型之一,约占总患者的6%。
左为LCA患者,右为健康人。两者的视网膜对比,LCA患者的血管组织更少,视网膜更薄,黄斑有所变化,没有中央暗斑。
LCA2型患者发病机制相对简单,“零部件”完整无缺,但需要一个能正常工作的RPE65基因来“重启”中断的视循环。
Spark Therapeutics公司经过三期临床试验,或即将上市的基因疗法“Luxturna”正是给LCA2型患者补上了正常的RPE65基因。但,用什么来输送这一基因?如何让这一基因“扎根”在患者体内?
“运输车”病毒
对。RPE65基因是“搭乘”病毒这辆听起来有些可怕的“车”进入患者体内的。
这并不是Spark Therapeutics公司的首创,事实上,在1990年,人类历史上第一次基因治疗就已经用病毒作为运输工具,将目标基因引入患者体内。
比起针、电击、脂质颗粒等微量DNA运输工具,病毒被看作是自然界的基因运输高手。病毒的身躯很小,结构很简单,所“内置”的遗传信息也不多。但病毒的强大寄生能力让它的威力大大增加——病毒可将自己的遗传信息嵌入到宿主细胞中,代由宿主细胞来帮助自己繁衍后代。
这一特性被科学家所利用。如果病毒经过改良,不再具有致病性,阻止其在体内的复制,同时又让病毒携带着目标基因,是不是就可以达到基因引入的目的呢?
在1990年那场具有里程碑意义的手术上,美国国家卫生院的威廉·安德森(William Anderson)在重症联合免疫缺陷病患者身上测试了这一大胆设想。安德森选择的病毒是莫罗尼小鼠白血病病毒,经过改造,病毒能定位和进入人类细胞,但无法生成新的病毒。
这些经过改良的病毒携带着重症联合免疫缺陷病患者所欠缺的正常腺苷脱氨酶基因,顺利地为患者补上了,原本因丧失免疫功能而只能生活在封闭气泡舱里的患者终于得以像正常人一样生活。
但将普通病毒作为“运输车”的无方向盘“恶魔性”很快显现出现。1999年,英国和法国的医生“改进”安德森的方法,将携带所需基因的放进了造血干细胞。预期要治疗的疾病是治好了,但却造成多位患者都得了白血病。
问题出在,病毒将所需基因运输到了人体基因组DNA的什么位置?各司其职的DNA片段会因为突如其来的插入者而造成功能损害。
祁鸣的比喻很生动。他对澎湃新闻解释,“就像天上掉一个东西下来,那么它必须要有一个机场,或者是大海、沙漠,才能够安全着陆。不能掉在杭州,也不能掉北京,